首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进粒子群算法的平房仓粮温BP神经网络预测模型建立
引用本文:王赫,曹毅,李玉,林琳,任丽辉,刘国辉,周钢霞. 基于改进粒子群算法的平房仓粮温BP神经网络预测模型建立[J]. 中国粮油学报, 2023, 38(6): 113-118
作者姓名:王赫  曹毅  李玉  林琳  任丽辉  刘国辉  周钢霞
作者单位:辽宁省粮食科学研究所,辽宁省粮食科学研究所,辽宁省粮食科学研究所,辽宁省粮食科学研究所,辽宁省粮食科学研究所,辽宁省粮食科学研究所,辽宁省粮食科学研究所
基金项目:辽宁省粮食科学研究所自主立项课题(LKS2021003)
摘    要:在传统的BP神经网络预测模型的基础上引入改进的粒子群算法对神经网络中的权值和阈值进行不断优化,针对平房仓内部不同温度监测点处的粮食温度建立预测模型,改进后的粒子群算法拥有更好的局部寻优能力和全局寻优能力,较传统的BP神经网络预测拥有更精确的预测精度,更小的预测误差,使优化后的BP神经网络能快速的从历史粮温中总结平方仓粮温变化规律,实现平房仓粮温的预测。

关 键 词:BP神经网络  粒子群算法  粮温预测
收稿时间:2022-06-10
修稿时间:2022-09-20

Prediction model of grain temperature in warehouse based on improved particle swarm optimization BP neural network
Abstract:In this paper, on the basis of the traditional BP neural network prediction model, the improved particle swarm algorithm is introduced to optimize the weights and thresholds of the neural network. The prediction model is established for the grain temperature at different temperature monitoring points in the warehouse. The improved particle swarm algorithm has better local optimization ability and global optimization ability. Compared with the traditional BP neural network prediction, the improved particle swarm algorithm has more accurate prediction accuracy and smaller prediction error. The optimized BP neural network can quickly summarize the grain temperature variation of the square warehouse from the historical grain temperature, and realize the prediction of the grain temperature of the warehouse.
Keywords:BP neural network    particle swarm optimization algorithm    grain temperature prediction
点击此处可从《中国粮油学报》浏览原始摘要信息
点击此处可从《中国粮油学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号