首页 | 本学科首页   官方微博 | 高级检索  
     


Structure of Liquid Al6Si2O13 (3:2 Mullite)
Authors:Shankar Krishnan  J. Richard K. Weber  Stuart Ansell  April D. Hixson  Paul C. Nordine
Affiliation:Containerless Research, Inc., Evanston, Illinois 60201;and;European Synchrotron Radiation Facility (ESRF), Grenoble, France
Abstract:We report the first measurements of the structure factor, S ( Q ), and the pair distribution function, G ( r ), of Al6Si2O13 (3:2 mullite) in the normal and supercooled liquid states in the temperature range 1776–2203 K. Measurements are obtained by synchrotron X-ray scattering on levitated, laser-heated liquid specimens. The S ( Q ) shows a prepeak at 2.0 Å−1 followed by a main peak at 4.5 Å−1 and a weak feature at 8 Å−1. The G ( r ) shows a strong (Si,Al)–O correlation at 1.80 Å at high temperature that moves to 1.72 Å as the liquid is supercooled. The second and third nearest neighbor peaks at 3.0 and 4.25 Å sharpen with supercooling. The short-range structure of the high-temperature liquid is similar to the corresponding glasses produced by rapid quenching. Supercooling causes an increase in the concentration of tetrahedral Si4+ ions, which is manifested by the large shift in the first peak to lower ionic distance, r , values in G ( r ). The increase in tetrahedrally coordinated Si4+ ions is offset by an increase in octahedral Al3+ ions. The clustering of the SiO44− tetrahedral units results in increased viscosity of the liquid at temperatures below the melting point, which is consistent with Al6Si2O13 being a fragile liquid.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号