首页 | 本学科首页   官方微博 | 高级检索  
     

采用图像处理的织物缝纫平整度自动评估
引用本文:张宁,潘如如,高卫东. 采用图像处理的织物缝纫平整度自动评估[J]. 纺织学报, 2017, 38(4): 145-150. DOI: 10.13475/j.fzxb.20160404106
作者姓名:张宁  潘如如  高卫东
作者单位:生态纺织教育部重点实验室(江南大学),无锡江苏,214122
基金项目:国家博士后基金项目,教育部博士点基金项目,江苏省博士后基金项目,2014江苏省研究生创新计划项目,江苏高校优势学科建设工程资助项目
摘    要:为解决织物缝纫平整度客观自动评估时分类正确率低的问题,提出了一种基于灰度共生矩阵、小波分析和反向传播(BP)神经网络相结合的织物缝纫平整度的自动评估方法。首先采集标准缝纫图像,将图像的灰度级降至16 级,计算图像在0°和90°方向上的灰度共生矩阵并将其归一化,提取灰度共生矩阵的能量、熵、对比度和相关性4 个特征参数,并分别对特征参数在0°和90°方向上取均值;同时,运用Haar 小波在第6个分析尺度上提取并计算图像的水平细节系数的标准差。然后将提取的这5 个特征参数输入到BP 神经网络中训练和识别,并对标准缝纫图像进行了评估。评估结果显示:提出的算法与单独采用灰度共生矩阵特征、小波特征相比,具有较高的分类正确率,分类效果稳定。

关 键 词:缝纫平整度   灰度共生矩阵   小波分析   BP神经网络  
收稿时间:2016-04-14

Automatic seam-puckering evaluation using image processing
ZHANG Ning,PAN Ruru,GAO Weidong. Automatic seam-puckering evaluation using image processing[J]. Journal of Textile Research, 2017, 38(4): 145-150. DOI: 10.13475/j.fzxb.20160404106
Authors:ZHANG Ning  PAN Ruru  GAO Weidong
Abstract:In order to solve the problem on low-accuracy classification in objective automatic evaluation of seam-puckering,a novel method based on gray level co-occurrence matrix,wavelet analysis and back propagation(BP) network was proposed for automatic seam-puckering evaluation.Firstly,a standard seam image was captured and the gray level of the seam image was reduced to 16 level,the gray level co-occurrence matrix of the seam image in the direction of 0° and 90° were calculated and normalized,then four characteristic parameters including energy,entropy,contrast and correlation were extracted from the gray level co-occurrence matrix,and the mean values of the characteristic parameters were obtained in the direction of 0° and 90°,respectively.Meanwhile,the standard deviation of the horizontal detail coefficients of the seam image was extracted and calculated by using Haar wavelet on the sixth analysis scales.After that,five extracted characteristic parameters were input to the BP neural network for training and recognizing,and the standard seam image was evaluated.The evaluation results show that the proposed algorithm,compared with one adopting gray level co-occurrence matrix characteristic or wavelet characteristic alone,has higher correct classification rate and stable classification effect.
Keywords:seam-puckering  gray level co-occurrence matrix  wavelet analysis  BP network
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《纺织学报》浏览原始摘要信息
点击此处可从《纺织学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号