首页 | 本学科首页   官方微博 | 高级检索  
     


Feature-based Groundwater Hydrograph Clustering Using Unsupervised Self-Organizing Map-Ensembles
Authors:Wunsch  Andreas  Liesch  Tanja  Broda  Stefan
Affiliation:1.Karlsruhe Institute of Technology (KIT), Institute of Applied Geosciences, Division of Hydrogeology, Kaiserstr. 12, Karlsruhe, 76131, Germany
;2.Federal Institute for Geosciences and Natural Resources (BGR), Wilhelmstr. 25-30, Berlin, 13593, Germany
;
Abstract:

Hydrograph clustering helps to identify dynamic patterns within aquifers systems, an important foundation of characterizing groundwater systems and their influences, which is necessary to effectively manage groundwater resources. We develope an unsupervised modeling approach to characterize and cluster hydrographs on regional scale according to their dynamics. We apply feature-based clustering to improve the exploitation of heterogeneous datasets, explore the usefulness of existing features and propose new features specifically useful to describe groundwater hydrographs. The clustering itself is based on a powerful combination of Self-Organizing Maps with a modified DS2L-Algorithm, which automatically derives the cluster number but also allows to influence the level of detail of the clustering. We further develop a framework that combines these methods with ensemble modeling, internal cluster validation indices, resampling and consensus voting to finally obtain a robust clustering result and remove arbitrariness from the feature selection process. Further we propose a measure to sort hydrographs within clusters, useful for both interpretability and visualization. We test the framework with weekly data from the Upper Rhine Graben System, using more than 1800 hydrographs from a period of 30 years (1986-2016). The results show that our approach is adaptively capable of identifying homogeneous groups of hydrograph dynamics. The resulting clusters show both spatially known and unknown patterns, some of which correspond clearly to external controlling factors, such as intensive groundwater management in the northern part of the test area. This framework is easily transferable to other regions and, by adapting the describing features, also to other time series-clustering applications.

Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号