首页 | 本学科首页   官方微博 | 高级检索  
     

遗传策略的综合改进及其在负荷建模中的应用
引用本文:李欣然,金群,刘艳阳,林舜江,陈辉华,唐外文. 遗传策略的综合改进及其在负荷建模中的应用[J]. 电网技术, 2006, 30(11): 40-46
作者姓名:李欣然  金群  刘艳阳  林舜江  陈辉华  唐外文
作者单位:湖南大学,电气与信息工程学院,湖南省,长沙市,410082;湖南电力调度通信中心,湖南省,长沙市,410007
基金项目:高等院校骨干教师基金,湖南省教育厅重点研究项目
摘    要:研究了遗传操作和控制参数选择对遗传算法性能的影响,设计了解群选择的随机-精英策略、避免近亲繁殖的双断点交叉策略和交叉与变异概率的自适应调整策略,提出了一种综合改进型遗传算法并成功地应用于基于实测参数的负荷建模。算例表明,该算法改善了进化过程中的种群多样性和早熟现象,对加速收敛、缩短辨识时间、克服模型参数分散性、提高辨识精度均有显著作用,适用于负荷建模。

关 键 词:电力系统  负荷建模  参数辨识  遗传算法  综合改进
文章编号:1000-3673(2006)11-0040-07
收稿时间:2006-01-24
修稿时间:2006-01-24

Synthetic Improvements of Genetic Strategies and Their Application in Power Load Modeling
LI Xin-ran,JIN Qun,LIU Yan-yang,LIN Shun-jiang,CHEN Hui-hua,TANG Wai-wen. Synthetic Improvements of Genetic Strategies and Their Application in Power Load Modeling[J]. Power System Technology, 2006, 30(11): 40-46
Authors:LI Xin-ran  JIN Qun  LIU Yan-yang  LIN Shun-jiang  CHEN Hui-hua  TANG Wai-wen
Affiliation:1. College of Electrical and Information Engineering, Hunan University, Changsha 410082, Hunan Province, China; 2. Hunan Power Dispatching and Communication Center, Changsha 410007, Hunan Province, China
Abstract:The influence of genetic operations and selection of control parameters on the performance of genetic algorithm is systematically studied. A random-elite strategy to choose colony, a two-point crossover strategy to avoid inbreeding and a self-adaptive modulating strategy to control both crossover and mutation probability are elaborately designed. A synthetically improved genetic algorithm is proposed and successfully applied to load modeling based on measured data. Practical modeling process shows that the proposed synthetically improved genetic algorithm can effectively ameliorate population diversity and overcome precocity in evolution course, and play outstanding role in accelerating convergence, shortening identification time, overcoming dispersivity of model parameters and improving identification precision. So it is suitable for load modeling.
Keywords:power system  load modeling  parameter identification  genetic algorithm  synthetic improvement
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《电网技术》浏览原始摘要信息
点击此处可从《电网技术》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号