首页 | 本学科首页   官方微博 | 高级检索  
     

拟线性迭代函数方程的解析解
引用本文:袁放,陈玉会. 拟线性迭代函数方程的解析解[J]. 淮阴工学院学报, 2008, 17(5): 34-39
作者姓名:袁放  陈玉会
作者单位:淮安市广播电视大学,江苏,淮安,223003
摘    要:研究讨论关于拟线性迭代甬数方程λ1(f(z))f(z)+λ2(f(z))f^2(z)+…+λn(f(z))f^n(z)=F(z)解析式的存在唯一性。通过Schroder变换,以上迭代方程能被转化为一个不含有未知函数迭代的辅助函数方程。因此通过有限阶非线性函数方程系的已知结果可以得到关于拟线性迭代函数方程的解析解。

关 键 词:拟线性  迭代函数方程  解析解  局部解析解

Analytic Solutions of a Quasi-linear Iterative Functional Equation
YUAN Fang,CHEN Yu-hui. Analytic Solutions of a Quasi-linear Iterative Functional Equation[J]. Journal of Huaiyin Institute of Technology, 2008, 17(5): 34-39
Authors:YUAN Fang  CHEN Yu-hui
Affiliation:Huai'an Television University;Huai'an Jiangsu 223003;China
Abstract:In this paper, existence uniqueness of analytic solutions to a quasi - linear iterative functional equation λ1 (f(z))f(z) + λ2(f(z) )f^2(z) + … + λn(f(z) )f^n(z) = F(z) is studied. By applying Schroder transformation, the above iterative equation can be reduced to an auxiliary functional equation which does not include the iteration of unknown function. As a result, analytic solutions of the quasi - linear iterative functional equations are obtained by applying known results of systems of nonlinear functional equations of finite orders.
Keywords:quasi-linear  iterative functional  analytic solutions  local analytic solutions  
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号