首页 | 本学科首页   官方微博 | 高级检索  
     

一种基于模糊加权的改进文本聚类方法
引用本文:刘海峰,姚泽清,刘守生. 一种基于模糊加权的改进文本聚类方法[J]. 微电子学与计算机, 2011, 28(9): 39-42
作者姓名:刘海峰  姚泽清  刘守生
作者单位:解放军理工大学理学院,江苏南京,210007
基金项目:国家自然科学基金项目(71071161)
摘    要:首先提出了一种优化初始中心点方法用以解决聚类的局部最优问题.同时通过样本的模糊加权减少边缘噪音数据对聚类效率的影响.文本聚类试验表明,该模糊文本聚类算法取得较好的聚类效果.

关 键 词:k-means算法  模糊聚类  文本聚类  模糊加权

An Improved Text Clustering Method Based on Fuzzy Weighting
LIU Hai-feng,YAO Ze-qing,LIU Shou-sheng. An Improved Text Clustering Method Based on Fuzzy Weighting[J]. Microelectronics & Computer, 2011, 28(9): 39-42
Authors:LIU Hai-feng  YAO Ze-qing  LIU Shou-sheng
Affiliation:LIU Hai-feng,YAO Ze-qing,LIU Shou-sheng(Institute of Sciences,PLA University of Science and Technology,Nanjing 210007,China)
Abstract:This paper proposes a new way that selects initial cluster center in order to solve the partially most superior phenomenon.By using the fuzzy weighting on the samples,this improved method decreases the influence that the k-means algorithm is very sensitive to the isolated point.Lastly,we have a test about text clustering and the result shows that this method obtains good clustering effect.
Keywords:k-means algorithm  fuzzy clustering  text clustering  fuzzy weighting  
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号