首页 | 本学科首页   官方微博 | 高级检索  
     


Effects of subacute lead exposure on [3H]MK-801 binding in hippocampus and cerebral cortex in the adult rat
Authors:T Ma  HH Chen  DK Lim  AS Hume  IK Ho
Affiliation:Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson 39216, USA.
Abstract:We used the NMDA receptor non-competitive antagonist, 3H]MK-801, as a ligand for an autoradiographic study to determine the effects of lead on NMDA receptor in the rat brain. Adult male rats were administered lead acetate, 100 mg/kg, or sodium acetate, 36 mg/kg (control), by i.p. for 7 days. High lead levels were detected in blood (41.1 microg/dl) and in brain (16.7-29.4 microg/g). Concentrations of lead in brain regions were not significantly different. The 3H]MK-801 binding was heterogeneously distributed throughout the rat brain with the following order of binding densities: hippocampal formation > cortex > caudate-putamen > thalamus > brainstem. Lead exposure produced a significant decrease in 3H]MK-801 binding to the NMDA receptor in the hippocampal formation including CA2 stratum radiatum, CA3 stratum radiatum, hilus dentate gyrus and presubiculum, and in the cerebral cortex including agranular insular, cingulate, entorhinal, orbital, parietal and perirhinal areas. The hippocampal formation is known as a critical neural structure for learning and memory processes, whereas, cortical and subcortical regions have been demonstrated to be involved in the modulation of complex behavioral processes. The NMDA receptor has been demonstrated to play a key role in synaptic plasticity underlying learning and memory. Lead-induced alterations of NMDA receptors in the hippocampal formation and cortical areas may play a role in lead-induced neurotoxicity.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号