首页 | 本学科首页   官方微博 | 高级检索  
     

二次插值的粒子群优化算法
引用本文:钱伟懿,卢静. 二次插值的粒子群优化算法[J]. 计算机工程与应用, 2013, 49(4): 35-38
作者姓名:钱伟懿  卢静
作者单位:渤海大学 数理学院,辽宁 锦州 121013
基金项目:国家自然科学基金(No.10871033);辽宁省自然科学基金(No.20102003)
摘    要:为了克服粒子群优化算法容易早熟的问题,提出了一种新的粒子群优化算法。算法在进行速度和位置更新后,随机选取两个个体历史最好位置(不含全局最好位置)与全局最好位置,利用二次插值产生新的位置,并与当前个体历史最好位置相比较,更新当前个体历史最好位置和全局历史最好位置。对6个经典测试函数进行数值实验,结果表明该算法提高了算法的寻优能力和收敛速度。

关 键 词:粒子群优化算法  二次插值  收敛速度  全局最优  

Quadratic interpolation Particle Swarm Optimization algorithm
QIAN Weiyi, LU Jing. Quadratic interpolation Particle Swarm Optimization algorithm[J]. Computer Engineering and Applications, 2013, 49(4): 35-38
Authors:QIAN Weiyi   LU Jing
Affiliation:School of Mathematics and Physics, Bohai University, Jinzhou, Liaoning 121013, China
Abstract:In order to overcome the problems of premature convergence frequently in Particle Swarm Optimization(PSO), a new PSO is proposed. After the update of the particle velocity and position, two positions from set of the current personal best position are closed at random. A new position is produced by the quadratic interpolation given through three positions, i.e., global best position and two other positions. The current personal best position and the global best position are updated by comparing with the new position. Simulation experimental results of six classic benchmark functions indicate that the new algorithm greatly improves the searching efficiency and the convergence rate of PSO.
Keywords:Particle Swarm Optimization  quadratic interpolation  convergence speech  global optimal
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号