On the occurrence of two-stage combustion in alkali metals |
| |
Authors: | A. Subramani S. Jayanti |
| |
Affiliation: | Department of Chemical Engineering, Indian Institute of Technology Madras, India |
| |
Abstract: | Pool combustion experiments have been conducted for three alkali metals, namely, lithium (Li), sodium (Na) and potassium (K). Lithium and sodium are found to show a two-stage combustion behaviour which has been reported for a number of other metals. Here, the combustion is characterized by a sporadic rise in the flame temperature accompanied by a bright glow. Potassium is found to burn in vapour phase combustion in all cases without sporadic temperature excursions. In the present study, this different burning behaviour is attributed to the formation of thick oxide agglomerates in the case of Li and Na through the pores of which oxygen/metal vapour has to diffuse for combustion to occur. In such cases, a second stage of vapour phase combustion occurs when the oxide agglomerate is heated sufficiently so that the vapour of the liquid metal trapped in the pores breaks through to the surface. In the case of potassium, a self-cleaning mechanism, attributable to the high solubility of the metal oxides in liquid potassium and the relatively low melting point of the potassium oxides, enables a clear liquid surface to be exposed throughout for vapour phase combustion to prevail always. Recorded temperature profiles, SEM analysis of the oxide agglomerates as well as calculations of the metal–oxygen equilibrium thermo-chemistry for the three metals confirm this scenario. |
| |
Keywords: | Metal combustion Alkali metals Vapour phase combustion Equilibrium thermodynamics Thermochemistry |
本文献已被 ScienceDirect 等数据库收录! |
|