首页 | 本学科首页   官方微博 | 高级检索  
     


Cell-specific differential expression of Na(+)-channel beta 1-subunit mRNA in the olfactory system during postnatal development and after denervation
Authors:S Sashihara  CA Greer  Y Oh  SG Waxman
Affiliation:Department of Neurology, Yale University School of Medicine, New Haven, Connecticut 06510, USA.
Abstract:Activity-dependent mechanisms have been implicated in olfactory system development but, although such activity requires ion channels, few reports have described their expression in the olfactory system. We investigated the developmental and denervation-induced regulation of the Na(+)-channel beta 1 subunit (Na beta 1) in rat olfactory bulb (OB) and piriform cortex (PC). In situ hybridization shows that Na beta 1 mRNA expression is upregulated developmentally, but with different time courses in mitral, tufted, and pyramidal cells. In mitral cells, label was detected at postnatal day 4 (P4) and gradually increased to P14. Tufted cells were devoid of Na beta 1 mRNA before P14, when most cells expressed adult levels. In pyramidal cells of PC, Na beta 1 expression was not detectable clearly until P14, with maximal expression at P28. To examine the regulation of Na beta 1 mRNA, we surgically deafferented the OB at P30 and compared the effects on Na beta 1 with those for Na(+)-channel alpha-subunit (Na alpha) mRNAs. Within 5 d of surgery, the Na beta 1 and Na alpha II signals within tufted cells disappeared almost completely. Na beta 1 and Na alpha II expression was decreased in mitral cells to low-to-moderate levels. In pyramidal cells, Na beta 1 mRNA expression was decreased moderately without significant changes in Na alpha II mRNA. Deafferentation had no detectable effects on Na alpha I or III mRNAs in either OB or PC. These data indicate that Na beta 1 mRNA is expressed differentially in subpopulations of cells in the olfactory system during development and after deafferentation and suggest that the expression of Na beta 1 is regulated independently of Na alpha mRNAs via cell-specific and pathway-specific mechanisms.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号