首页 | 本学科首页   官方微博 | 高级检索  
     


Assessment of potential approaches to improve Eucalyptus globulus kraft pulping yield
Authors:A. S. Santiago  C. Pascoal Neto
Affiliation:CICECO and University of Aveiro, Department of Chemistry, 3810‐193 Aveiro, Portugal
Abstract:The main goal of this work is to study the potential approaches to improve polysaccharides retention during Eucalyptus globulus kraft pulping. The addition of anthraquinone to kraft pulping leads to the highest pulp yield while the addition of urea promotes lower depolymerization of polysaccharides (higher pulp viscosity), but does not have a significant effect on yield. The early interruption of kraft cooking followed by oxygen delignification is a reliable approach to increase pulp yield, particularly when pulping is interrupted at the end of the faster and more selective kinetic regime (bulk phase). Yield loss during oxygen delignification is considerably lower than that incurred in the last phase of kraft pulping. Pulping with OH?/HS? charge profiling, carried out with liquor injection in three different phases leads to a yield increase. However, this increase results from a lower total alkali charge applied when profiling pulping is compared to standard pulping conditions, rather than to alkali profiling. Standard kraft pulping with different active alkali (AA) charges demonstrated that this operational variable is determinant for pulp yield and viscosity. Pulping experiences with lower AA (14%) resulted in a higher and almost constant pulp viscosity and in a higher pulp yield, assigned to improved retention of both cellulose and xylan. During the last stage of pulping, cellulose content decreases, this being mainly responsible for the decrease of pulp yield, while xylan content is almost constant, a feature attributed to the peculiar structure of this E. globulus's hemicellulose. Copyright © 2007 Society of Chemical Industry
Keywords:Eucalyptus globulus  kraft pulping  yield  additives  alkali charge  process selectivity
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号