首页 | 本学科首页   官方微博 | 高级检索  
     

求解最优控制问题的Chebyshev-Gauss伪谱法
引用本文:唐小军, 尉建利, 陈凯. 求解最优控制问题的Chebyshev-Gauss伪谱法. 自动化学报, 2015, 41(10): 1778-1787. doi: 10.16383/j.aas.2015.e130297
作者姓名:唐小军  尉建利  陈凯
作者单位:1.西北工业大学航空学院 西安 710072;;2.西北工业大学航天学院 西安 710072
基金项目:Supported by Natural Science Basic Research Plan in Shaanxi Province of China (2014JQ8366), Fundamental Research Foun- dation of Northwestern Polytechnical University (JC20120210, JC20110238), and Aeronautical Science Foundation of China (20120853007)
摘    要:提出了一种求解最优控制问题的Chebyshev-Gauss伪谱法, 配点选择为Chebyshev-Gauss点. 通过比较非线性规划问题的Kaursh-Kuhn-Tucker条件和伪谱离散化的最优性条件, 导出了协态和Lagrange乘子的估计公式. 在状态逼近中, 采用了重心Lagrange插值公式, 并提出了一种简单有效的计算状态伪谱微分矩阵的方法. 该法的独特优势是具有良好的数值稳定性和计算效率. 仿真结果表明, 该法能够高精度地求解带有约束的复杂最优控制问题.

关 键 词:最优控制   伪谱法   协态估计   Chebyshev-Gauss点
收稿时间:2013-12-18
修稿时间:2014-05-28

A Chebyshev-Gauss Pseudospectral Method for Solving Optimal Control Problems
TANG Xiao-Jun, WEI Jian-Li, CHEN Kai. A Chebyshev-Gauss Pseudospectral Method for Solving Optimal Control Problems. ACTA AUTOMATICA SINICA, 2015, 41(10): 1778-1787. doi: 10.16383/j.aas.2015.e130297
Authors:TANG Xiao-Jun  WEI Jian-Li  CHEN Kai
Affiliation:1. School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China;;;2. School of Astronautics, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:A pseudospectral method is presented for direct trajectory optimization of optimal control problems using collocation at Chebyshev-Gauss points, and therefore, it is called Chebyshev-Gauss pseudospectral method. The costate and constraint multiplier estimates for the proposed method are rigorously derived by comparing the discretized optimality conditions of an optimal control problem with the Karush-Kuhn-Tucker conditions of the resulting nonlinear programming problem from collocation. The distinctive advantages of the proposed method over other pseudopsectral methods are the good numerical stability and computational efficiency. In order to achieve this goal, the barycentric Lagrange interpolation is substituted for the classic Lagrange interpolation in the state approximation. Furthermore, a simple yet efficient method is presented to alleviate the numerical errors of state differential matrix using the trigonometric identity especially when the number of Chebyshev-Gauss points is large. The method presented in this paper has been taken to two optimal control problems from the open literature, and the results have indicated its ability to obtain accurate solutions to complex constrained optimal control problems.
Keywords:Optimal control  pseudospectral methods  costate estimation  Chebyshev-Gauss points
点击此处可从《自动化学报》浏览原始摘要信息
点击此处可从《自动化学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号