首页 | 本学科首页   官方微博 | 高级检索  
     


Improvement in thermal conductivity and mechanical properties of ethylene‐propylene–diene monomer rubber by expanded graphite
Abstract:Thermally conductive fillers are usually employed in the preparation of rubber composites to enhance thermal conductivity. In this work, ethylene‐propylene‐diene monomer rubber (EPDM)/expanded graphite (EG) and EPDM/graphite composites with up to 100 phr filler loading were prepared. Compared to EPDM/graphite compounds with the same filler loading, stronger filler network was demonstrated for EPDM/EG compounds. Thermal conductivity and mechanical properties of EPDM/graphite and EPDM/EG composites were compared and systematically investigated as a function of the filler loading. The thermal conductivity of both EPDM/graphite and EPDM/EG composites increased with increasing volume fraction of fillers, and could be well fitted by Geometric Mean Model. The thermal conductivity as high as 0.910 W · m?1 · K?1 was achieved for the EPDM/EG composite with 25.8 vol% EG, which was ~4.5 times that of unfilled EPDM. Compared to EPDM/graphite composites, EPDM/EG composites exhibited much more significant improvement in thermal conductivity and mechanical properties, which could be well correlated with the better filler‐matrix interfacial compatibility and denser structure in EPDM/EG composites, as revealed in the SEM images of tensile fracture surfaces. POLYM. COMPOS., 38:870–876, 2017. © 2015 Society of Plastics Engineers
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号