首页 | 本学科首页   官方微博 | 高级检索  
     


Dynamic finite element analysis of nonaxisymmetric structures
Authors:AR Zak  AD Antartis
Affiliation:Department of Aeronautical and Astronautical Engineering, University of Illinois, Urbana, IL 61803, U.S.A.
Abstract:A dynamic finite element method of analysis is developed for structural configurations which are derived from axisymmetric geometries but contain definite nonaxisymmetric features in the circumferential direction. The purpose of the analysis is to develop a method which will take into consideration the fact that the stress and strain conditions in these geometries will be related to the corresponding axisymmetrie solution. This analysis is an extension of previously published work in which a similar approach was developed for static structural problems. The analysis is developed in terms of a cylindrical coordinate system r, θ and z. As the first step of the analysis, the geometry is divided into several segments in the r-θ plane. Each segment is then divided into a set of quadrilateral elements in the r-z plane. The axisymmetric displacements are obtained for each segment by solving a related axisymmetric configuration. A perturbation analysis is then performed to match the solutions at certain points between the segments, and obtain the perturbation displacements for the total structure. The total displacement is then the axisymmetric displacement plus the perturbation displacement. The analysis allows for elastic-plastic materials with orthotropic yield criterion based on Hill's yield function and kinematic strain hardening. The finite element dynamic equations are solved by finite differences by dividing the time domain into incremental steps. The solution has been programmed on a computer and applied to a number of examples.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号