首页 | 本学科首页   官方微博 | 高级检索  
     

一种求解参数优化问题的引导交叉算子
引用本文:陈乔礼,吴怀宇,程磊. 一种求解参数优化问题的引导交叉算子[J]. 计算机工程, 2008, 34(1): 207-209
作者姓名:陈乔礼  吴怀宇  程磊
作者单位:武汉科技大学信息科学与工程学院,武汉,430081
基金项目:国家自然科学基金 , 国际科技合作基金重点项目 , 教育部科研基金
摘    要:提出一种应用于参数优化问题的引导交叉算子。该交叉算子利用父代染色体的适应值差异,引导交叉操作产生的子代向适应值高的父代倾斜,以产生高适应值的子代个体。对于连续函数,高适应值个体的邻域内也是高适应值的个体,且在两个个体之间不存在极值时,朝适应值增加的方向可以生成更优的个体。实验表明,对比常用的算术交叉算子,引导交叉算子具有更强的全局、局部搜索能力和更快的搜索速度。

关 键 词:遗传算法  参数优化  算术交叉  引导交叉
文章编号:1000-3428(2008)01-0207-03
收稿时间:2007-01-18
修稿时间:2007-01-18

Guided Crossover for Parameter Optimization
CHEN Qiao-li,WU Huai-yu,CHENG Lei. Guided Crossover for Parameter Optimization[J]. Computer Engineering, 2008, 34(1): 207-209
Authors:CHEN Qiao-li  WU Huai-yu  CHENG Lei
Affiliation:??College of Information Science and Engineering, Wuhan University of Science and Technology, Wuhan 430081??
Abstract:A kind of guided crossover for the parameter optimization problem is proposed. The fitness difference between parents would be used for guiding the generation of tbe offspring so that the Euclidean distance between offspring and better parent will be smaller. There are two reasons for this strategy which can achieve better performance than random crossover. For the continuous functions, firstly, the neighborhood of higher fitness individuals has better individuals, and better offspring can be generated toward the improved direction of fitness. Case studies of the numerical simulations are given to demonstrate that guided crossover has higher efficiency and better ability of global and local search, as compared with conventional arithmetical crossover.
Keywords:genetic algorithm   parameter optimization   arithmetical crossover   guided crossover
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《计算机工程》浏览原始摘要信息
点击此处可从《计算机工程》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号