首页 | 本学科首页   官方微博 | 高级检索  
     

大型洞室群稳定性与优化的并行进化神经网络有限元方法研究--第一部分:理论模型
引用本文:安红刚,冯夏庭,李邵军. 大型洞室群稳定性与优化的并行进化神经网络有限元方法研究--第一部分:理论模型[J]. 岩石力学与工程学报, 2003, 22(5): 706-710
作者姓名:安红刚  冯夏庭  李邵军
作者单位:中国科学院武汉岩土力学研究所岩土力学重点实验室,武汉,430071
基金项目:国家自然科学基金重点项目(59939190)资助课题
摘    要:提出并行进化神经网络有限元方法,通过有限元计算构造样本,用并行进化搜索到的神经网络学习并建立计算方案与地下洞室关键点最大位移和破损区体积之间的映射关系;随机产生一组初始方案,以关键点最大位移和破损区体积大小与参考值的差值比加权和作为评价指标,对该组方案进行遗传操作,产生下一代可行方案,由此进行下一步操作直至找到最优方案。利用自主开发的基于WINDOWS平台的并行计算环境(RsmVPC)来实现并行计算,该方法使得大规模优化问题在PC机群上实现了并行求解,提高了计算速度、规模与精度。

关 键 词:大型洞室群 稳定性 PC机群 数值分析 神经网络 有限元
文章编号:1000-6915(2003)05-0706-05
修稿时间:2001-08-20

RESEARCH ON PARALLEL EVOLUTIONARY NEURAL NETWORK FEM FOR STABILITY ANALYSIS AND OPTIMIZATION OF LARGE CAVERN GROUP--PART Ⅰ: THEORY MODEL
An Hogngang,Feng Xiating> Li Shaojun. RESEARCH ON PARALLEL EVOLUTIONARY NEURAL NETWORK FEM FOR STABILITY ANALYSIS AND OPTIMIZATION OF LARGE CAVERN GROUP--PART Ⅰ: THEORY MODEL[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(5): 706-710
Authors:An Hogngang  Feng Xiating> Li Shaojun
Abstract:With ever enlarging scale of the underground cavern group, recognition of relevant parameters and scheme optimization would be highly nonlinear and of multi-extreme values in the solution space. It is much in need of finding an available method of global optimization and parallel computation. So a new parallel evolutionary neural network FEM is put forward. Through the sample construction by FEM calculating, the mapping relationship among the calculating schemes, the maximum displacement and the volume of damage zone is set up by parallel evolutionary neural network, and a group of initial feasible schemes are given by genetic algorithms(GAs). Evaluated by the maximum displacement of key spots and volume of damage zone, a group of new schemes are generated by operation of GAs. The operation is done until the reasonable scheme is found. The parallel computation is carried out on independently developed parallel environment(RsmVPC) based on WINDOWS platform. The methodology makes it possible to solve the large scale optimization problems parallelly on PC machine groups, and to improve the computing speed, scale and precision to a large extent with the proposed method.
Keywords:numerical analysis   parallel evolutionary neural network FEM   large cavern group   scheme optimization   PC machine groups
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号