首页 | 本学科首页   官方微博 | 高级检索  
     


Determination of the interfacial heat transfer coefficient in a metal-metal system solving the inverse heat conduction problem
Authors:Surya Pratap Mehrotra  Apratim Chakravarty  Prabhdeep Singh
Abstract:Simulation of several industrial processes involving solidification of metals requires characterization of heat transfer coefficient at the solidifying metal/metal-substrate interface. In the present investigation an attempt has been made to estimate this heat transfer coefficient, hc, using simulated experiments in which the heat transfer from a heated stainless steel block (simulating solidifying metal) to a water cooled copper block (simulating metal-substrate) is monitored by continuously recording temperatures at a few internal locations both within the metal block and the substrate block. The problem of determining the interfacial heat transfer coefficient is recognized to be an inverse heat conduction problem (IHCP). A numerical method is employed to solve IHCP and to determine the hc from the transient history of temperatures at a few locations. The effect of the physical nature of the interface, as well as the cooling conditions prevailing at the outer surface of the substrate on hc is examined and discussed. While the physical nature of the interface, i.e. roughness on the metal as well as the substrate surfaces, has a significant effect on hc, the cooling conditions have only a marginal effect. The hc in the present investigation remains more or less time invariant.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号