首页 | 本学科首页   官方微博 | 高级检索  
     

基于多种输出嵌入结合的无标签图像分类
引用本文:何琪,卢建军,刘志鹏. 基于多种输出嵌入结合的无标签图像分类[J]. 电视技术, 2016, 40(9): 132-136. DOI: 10.16280/j.videoe.2016.09.027
作者姓名:何琪  卢建军  刘志鹏
作者单位:1. 西安邮电大学通信与信息工程学院,陕西西安,710121;2. 西安邮电大学经济与管理学院,陕西西安,710121
基金项目:西安邮电大学青年教师科研(ZL2014-49)
摘    要:利用多种输出嵌入相结合的方法,改善无标签图像的分类性能.以边信息作为标签嵌入,用图像特征作为输入嵌入,在标签嵌入和输入嵌入之间构建一个联合兼容函数,建立结构化联合嵌入框架.通过调整联合嵌入的权重矩阵,使兼容函数取得最大值,据此确定图像的分类.借助两个数据集进行的验证,实验结果显示,多种输出嵌入结合的图像分类方法准确率优于单输出嵌入的图像分类方法.

关 键 词:图像分类  标签嵌入  输出嵌入
收稿时间:2015-11-05
修稿时间:2015-12-24

Unlabeled image classification based on multiple output embeddings
HEQi,LU Jianjun and Liu Zhipeng. Unlabeled image classification based on multiple output embeddings[J]. Ideo Engineering, 2016, 40(9): 132-136. DOI: 10.16280/j.videoe.2016.09.027
Authors:HEQi  LU Jianjun  Liu Zhipeng
Abstract:By using the method of combining multiple output embeddings, the performance of unlabeled image classification is improved. Side information is used as label embedding and image features are used as output embedding, by introducing a joint compatibility function between label embedding and output embedding, the Structured Joint Embedding framework is established. By adjusting the weighting matrix to make the compatibility function to the maximum, and thus the image classification is determined. Validation with two data sets, the experiment results show that the image classification method of combining multiple output embeddings has superior accuracy to that of using the single output embedding.
Keywords:image  classification,label  embedding, output  embedding
本文献已被 万方数据 等数据库收录!
点击此处可从《电视技术》浏览原始摘要信息
点击此处可从《电视技术》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号