首页 | 本学科首页   官方微博 | 高级检索  
     


High Steady Magnetic Field Processing of Functional Magnetic Materials
Authors:Sophie Rivoirard
Affiliation:1. Centre National de la Recherche Scientifique/CRETA, BP166, 38042, Grenoble Cedex 9, France
Abstract:The materials science community has been enriched for some decades now by the “magneto-science” approach, which consists of applying a magnetic field during material processing. The development of anisotropic properties by applying a steady magnetic field is now a well-established effect in the material processing of magnetic substances, which benefits from the unidirectional and static nature of the field delivered by superconducting magnets. Among other effects, magnetic anisotropy in functional magnetic materials, which arises from the alignment of magnetic moments under external field, can be developed at various structural scales. Magnetic ordering, magnetic patterning, and texturation are at the origin of this anisotropy development. Texture is developed in materials from magnetic orientation due to magnetic forces and torques or from stored energy. In metals and alloys, for instance, this effect can occur either in their liquid state or during solid-state thermomagnetic treatments and can thus impact significantly the material functional magnetic properties. Today’s improved superconducting magnet technology allows higher field intensities to be delivered more easily (1 T up to several tens of Teslas) and enables researchers to gather evidence on magnetic field effects that were formerly thought to be negligible. The magneto-thermodynamic effect is one of them and involves the magnetization energy as an additional parameter to tailor microstructures. Control of functional properties can thus result from magnetic monitoring of the phase transformation, and kinetics can be impacted by the magnetic energy contribution.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号