首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of an interphase layer on the electroelastic stresses within a three-phase elliptic inclusion
Authors:LJ Sudak
Affiliation:Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta, Canada T2N-1N4
Abstract:Electroelastic stresses induced by electromechanical loadings and lattice mismatch between components and surrounding materials are found to significantly influence the electronic performance of devices and, in some cases, are identified as a major cause of failure and degradation. To reduce electromechanical failure an effective method is to apply an intermediate layer, with appropriate geometry and material properties, between the components of dissimilar piezoelectric materials. In this paper, the effect of an intermediate layer on the electroelastic stresses within an elliptical inhomogeneity is examined within the framework of linear piezoelectricity. Exact closed-form solutions are obtained for the electroelastic stresses in the inclusion, the interphase layer and the matrix, respectively, under remote mechanical antiplane shear and inplane electric field, by means of the complex variable method. It is shown that the electroelastic stresses depend on only two complex coefficients. Simple formulae and numerical examples are used to illustrate the effects of the interphase layer on the electroelastic stresses within the inclusion, and the dependency of this effect on the aspect ratio of the elliptical inclusion.
Keywords:Piezoelectricity  Inclusion  Complex variable methods  Electroelastic stress concentrations
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号