首页 | 本学科首页   官方微博 | 高级检索  
     

基于径向基神经网络的旋转机械故障诊断
引用本文:汪庆华,王敬涛,邓东花. 基于径向基神经网络的旋转机械故障诊断[J]. 现代电子技术, 2010, 33(18): 141-142,150
作者姓名:汪庆华  王敬涛  邓东花
作者单位:1. 西安工业大学,机电学院,陕西,西安,710032
2. 广西石化公司机电仪中心,广西,钦州,535008
3. 中国石油天然气管道工程有限公司仪表自动化室,河北廊坊,065000
摘    要:针对旋转机械故障征兆与故障模式映射的复杂性,以及BP网络容易陷入局部极小、收敛速度慢等缺点,提出基于径向基(RBF)神经网络的风机故障诊断方法。以风机振动信号的7段频谱能量峰值作为故障特征,采用训练好的RBF网络进行故障辨识。结果表明,RBF网络能满足风机故障诊断的准确性,并在避免局部极小和节约训练时间方面有较好的实用性。

关 键 词:RBF神经网络  故障诊断  风机  故障特征

Fault Diagnosis of Rotary Machines Based on RBF Neural Network
WANG Qing-hua,WANG Jing-tao,DENG Dong-hua. Fault Diagnosis of Rotary Machines Based on RBF Neural Network[J]. Modern Electronic Technique, 2010, 33(18): 141-142,150
Authors:WANG Qing-hua  WANG Jing-tao  DENG Dong-hua
Affiliation:1. School of Mechatronic Engineering, Xi' an Technological University, Xi' an 710032, China ;2. Guangxi Petrochemical Company, Qinzhou 535008, China; 3. China Petroleum Pipeline Engineering Corporation, Langfang 065000, China)
Abstract:Aiming the mapping complexity between fault symptoms and fault patterns of rotary machines, and the problems of falling easily into part minimums and low velocity of convergence in BP neural networks, a fault diagnosis method of fan based on Radial Basis Function (R/3F) neural network is put forward. Making the seven frequency bands peak energy of vibration signals of a fan as fault symptoms, RBF network is trained to diagnose a fan, the results show that RBF network is a valid method of the fault diagnosis of fan in proving accuracy, repressing the network to sink local minimum and shortening the study time.
Keywords:RBF neural network  fault diagnosis  fan  fault features
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号