首页 | 本学科首页   官方微博 | 高级检索  
     


In situ ultrasonic force signals during low-temperature thermosonic copper wire bonding
Authors:A. Shah  M. Mayer  S.J. Hong
Affiliation:a Microjoining Laboratory, University of Waterloo, ON, Canada
b MK Electron Co., Ltd., Yongin, South Korea
Abstract:Ultrasonic in situ force signals from integrated piezo-resistive microsensors were used previously to describe the interfacial stick-slip motion as the most important mechanism in thermosonic Au wire ball bonding to Al pads. The same experimental method is applied here with a hard and a soft Cu wire type. The signals are compared with those obtained from ball bonds with standard Au wire. Prior to carrying out the microsensor measurements, the bonding processes are optimized to obtain consistent bonded ball diameters of 60 μm yielding average shear strengths of at least 110 MPa at a process temperature of 110 °C. The results of the process optimization show that the shear strength cpk values of Cu ball bonds are almost twice as large as that of the Au ball bonds. The in situ ultrasonic force during Cu ball bonding process is found to be about 30% higher than that measured during the Au ball bonding process. The analysis of the microsensor signal harmonics leads to the conclusion that the stick-slip frictional behavior is significantly less pronounced in the Cu ball bonding process. The bond growth with Cu is approximately 2.5 times faster than with Au. Ball bonds made with the softer Cu wire show higher shear strengths while experiencing about 5% lower ultrasonic force than those made with the harder Cu wire.
Keywords:Wire bonding   Ultrasonic   Thermosonic   Piezo-resistive   Microsensor   Bonding mechanism   Ball bonding
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号