首页 | 本学科首页   官方微博 | 高级检索  
     


Molecular modelling of the elastic behaviour of poly(ethylene terephthalate) network chains
Authors:JI CailRFT Stepto
Affiliation:Polymer Science and Technology Group, Manchester Materials Science Centre, UMIST and University of Manchester, Grosvenor Street, Manchester M1 7HS, UK
Abstract:The Monte-Carlo (MC) method developed to model the elastomeric stress-strain behaviour of polyethylene (PE) and poly(dimethyl siloxane) (PDMS) networks and the stress-optical behaviour of PE networks is now applied to the stress-strain behaviour of poly(ethylene terephthalate) (PET) networks. In keeping with the previous results for PE and PDMS networks, increases in the proportions of fully extended chains with macroscopic deformation are found to give rise to steady decreases in the rates of Helmholtz energy changes, causing reductions in moduli at moderate macroscopic deformations. There is no need to invoke a transition from affine to phantom chain behaviour as deformation increases.By using rotational-isomeric-state (RIS) models of the network chains and the MC method, stress-strain behaviour can be related to chemical structure. In this respect, the greater conformational flexibility of the PET chain leads to lower network moduli and smaller deviations from Gaussian network behaviour than for PE networks. In addition, the stiff, aromatic section of the PET repeat unit structure is seen to endow particular characteristics on the end-to-end distribution functions of PET chains. These characteristics are taken fully into account in evaluating the elastomeric properties of the PET networks. Subsequent publications will apply the present results to interpreting the measured stress-strain and the stress-optical properties of entangled PET melts.
Keywords:Elastic behaviour  Polyethylene  Poly(dimethyl siloxane)
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号