首页 | 本学科首页   官方微博 | 高级检索  
     


Enabling nanotechnology with self assembled block copolymer patterns
Authors:Cheolmin ParkAuthor VitaeJongseung YoonAuthor Vitae  Edwin L. ThomasAuthor Vitae
Affiliation:a Department of Metallurgical System Engineering, Yonsei University, Seoul 120-749, South Korea
b Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
c Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
Abstract:Block copolymers (BCPs) have received great attention for the past 40 years but only within the past decade have they been seriously considered for nanotechnological applications. Their applicability to nanotechnology stems from the scale of the microdomains and the convenient tunability of size, shape, and periodicity afforded by changing their molecular parameters. The use of the tensorial physical properties of BCPs in such areas as transport, mechanical, electrical, and optical properties will provide substantial benefits in the future. In this review article, we first focus on the current efforts to utilize BCPs in nanotechnologies including nanostructured membranes, BCP templates for nanoparticle synthesis, photonic crystals, and high-density information storage media. In order to realize these applications, control over microdomain spatial and orientational order is paramount. This article reviews various methods to control BCP microdomain structures in the bulk state as well as in thin films. A variety of biases such as mechanical flow fields, electric fields, temperature gradients, and surface interactions can manipulate the microstructures of BCPs. A particular emphasis is made on two approaches, epitaxy and graphoepitaxy, and their combinations. Manipulation of BCP microdomain structures employing multiple external fields promises realization of many potential nanotechnological applications.
Keywords:Block copolymers   Self-assembly   Nanostructures
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号