首页 | 本学科首页   官方微博 | 高级检索  
     


Modeling of Drying of Food Materials with Thickness of Several Centimeters by the Reaction Engineering Approach (REA)
Authors:Aditya Putranto  Paul A Webley
Affiliation:Department of Chemical Engineering , Monash University , Victoria , Australia
Abstract:Food materials are highly perishable. Drying is necessary to restrict biological and chemical activity to extend shelf life. A good drying model is useful for design of a better dryer, evaluation of dryer performance, prediction of product quality, and optimization. The reaction engineering approach (REA) is a simple-lumped parameter model revealed to be accurate and robust to model drying of various thin layers or small objects. Modeling drying behavior of different sizes is essential for a good drying model, yet it is still very challenging, even for a traditional diffusion-based model, which requires several sets of experiments to generate the diffusivity function. The REA is implemented in this study, for the first time, to model drying of rather thick samples of food materials. An approximate spatial distribution of sample temperature is introduced and combined with the REA to model drying kinetics. Results have indicated that the REA can model both moisture content and temperature profiles. The accuracy and effectiveness of the REA to model drying of thick samples of food materials are revealed in this study. This has extended the application of REA substantially. The application of the REA is currently not restricted for thin layesr or small objects but also for thick samples.
Keywords:Apple  Convective drying  Mango  Reaction engineering approach (REA)  Temperature distribution  Thick samples
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号