首页 | 本学科首页   官方微博 | 高级检索  
     


Numerical Study on Moisture Transfer in Ultrasound-Assisted Convective Drying Process of Sludge
Authors:Fang Zhao
Affiliation:School of Energy and Environment, IIUSE, Southeast University , Nanjing, China
Abstract:A coupled heat and moisture transfer model for ultrasound-assisted convective drying process of sludge was established. In this model, the permeable flow caused by acoustic pressure gradient in sludge was considered. The pore structure variety in sludge with ultrasonic irradiation was microscopically studied, and the pore size distribution of sludge was described by fractal geometry. Based on the fractal characterization, the physical properties of sludge including permeability, porosity, and tortuosity factor were determined, and the effective moisture diffusion coefficient of sludge under ultrasonic irradiation was also derived considering the effects of ultrasonic excitation energy and thermal effect on migration rate of water molecule. The effects of ultrasonic energy density and convective air temperature on convective drying process of sludge were numerically analyzed. The results showed that the ultrasonic irradiation changes the pore size distribution in sludge, the sludge flocs are dispersed, and the connectivity of pore structure is improved. Ultrasonic treatment is favorable to accelerating the moisture transport in the convective drying process of sludge, and the ultrasonic influence on moisture transport in sludge intensifies gradually with the increase of acoustic energy density from 0.2 to 0.6 W/ml. Furthermore, it can be also found that the enhancement effect of ultrasound on the average drying rate of sludge is more obvious at the connective air temperature of 65°C than that at 40°C under the uniform acoustic energy density and air velocity of 1.5 m/s.
Keywords:Drying  Fractal  Sludge  Ultrasound
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号