首页 | 本学科首页   官方微博 | 高级检索  
     

核主成分分析和粒子群优化算法在牵引电机故障诊断中的应用研究
引用本文:李全林,何忠韬,刘军军. 核主成分分析和粒子群优化算法在牵引电机故障诊断中的应用研究[J]. 电气传动自动化, 2010, 32(6): 1-5
作者姓名:李全林  何忠韬  刘军军
作者单位:兰州交通大学,机电工程学院,甘肃,兰州,736070;兰州交通大学,机电工程学院,甘肃,兰州,736070;兰州交通大学,机电工程学院,甘肃,兰州,736070
摘    要:提出了一种采用核主成分分析和粒子群优化支持向量机的电力机车笼型异步牵引电机故障诊断方法。先利用核主成分分析对故障数据进行特征提取,以获得的故障特征子集作为支持向量机故障分类器的训练样本,然后设计和构建了支持向量机多故障诊断系统,其中,支持向量机的参数通过粒子群优化算法进行了优化,最后实现对笼型异步牵引电机的故障诊断。该方法既发挥了核主成分分析的特征提取能力,又充分利用了支持向量机良好的分类性能和泛化推广能力以及因其算法简单而满足的在线故障诊断的实时性要求。实验结果分析表明,该方法能够有效地应用于电力机车笼型异步牵引电机的故障诊断。

关 键 词:故障诊断  笼型异步牵引电机  核主成分分析  粒子群优化  支持向量机

Research on application of KPCA and PSO-SVM in fault diagnosis of traction motors
LI Quan-lin,HE Zhong-tao,LIU Jun-jun. Research on application of KPCA and PSO-SVM in fault diagnosis of traction motors[J]. Electrical Drive Automation, 2010, 32(6): 1-5
Authors:LI Quan-lin  HE Zhong-tao  LIU Jun-jun
Affiliation:LI Quan-lin,HE Zhong-tao,LIU Jun-jun(School of Mechanical-Electronics Engineering,Lanzhou Jiaotong University,Lanzhou730070,China)
Abstract:A fault diagnosis method of cage asynchronous traction motor on electric locomotive using kernel principal component analysis(KPCA),particle swarm optimization(PSO)and support vector machine(SVM) is proposed.The kernel principal component analysis is firstly employed to extract main feature from fault data in order to obtain the fault feature subset which is used as training sample of SVM fault classifier,and then designing and building the mult-fault diagnosis system of SVM,the SVM parameter of which is op...
Keywords:fault diagnosis  cage asynchronous traction motor  kernel principal component analysis  particle swarm optimization  support vector machine  
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号