首页 | 本学科首页   官方微博 | 高级检索  
     


Flexible transparent conductive film based on silver nanowires and reduced graphene oxide
Authors:WANG Ke  YANG Xing  LI Zhi-ling  XIE Hui  ZHAO Yu-zhen  WANG Yue-hui
Affiliation:1.Department of Materials and Food,University of Electronic Science and Technology of China, Zhongshan Institute,Zhongshan,China;2.State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Microelectronics and Solid-State Electronics,University of Electronic Science and Technology of China,Chengdu,China;3.Department of Materials Science and Engineering,Tsinghua University,Beijing,China
Abstract:Silver nanowires (AgNWs) with diameter of 90—150 nm and length of 20—50 μm were successfully synthesized by a polyol process. Graphene oxide (GO) was prepared by Hummers method, and was reduced with strong hydrazine hydrate at room temperature. The flexible transparent conductive films (TCFs) were fabricated using the mixed cellulose eater (MCE) as matrix and AgNWs and reduced graphene oxide (rGO) as conductive fillers by the improved vacuum filtration process. Then, the optical, electrical and mechanical properties of the AgNWs-rGO films were investigated. The results show that for the AgNWs-rGO film produced with the deposition densities of AgNWs and rGO as 110 mg·m-2 and 55 mg·m-2, the optical transmission at 550 nm is 88.4% with Rs around 891 Ω·sq-1, whereas the optical transmission for the AgNWs-rGO film with deposition densities of AgNWs and rGO of 385 mg·m-2 and 55 mg·m-2 is 79.0% at 550 nm with Rs around 9.6 Ω·sq-1. There is little overt increase in Rs of the AgNWS-rGO film after tape tests for 200 times. The bending test results indicate that the change in Rs of AgNWs-MCE film is less than 2% even after 200 cycles of compressive or tensile bending. The excellent mechanical properties of the AgNWs-rGO film can be attributed to the burying of AgNWs and rGO at the surface of MCE.
Keywords:
本文献已被 SpringerLink 等数据库收录!
点击此处可从《光电子快报》浏览原始摘要信息
点击此处可从《光电子快报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号