首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进NSGA-II算法的含分布式电源配电网无功优化
引用本文:张晓英,张艺,王琨,张蜡宝,陈伟,王晓兰. 基于改进NSGA-II算法的含分布式电源配电网无功优化[J]. 电力系统保护与控制, 2020, 48(1): 55-64. DOI: 10.19783/j.cnki.pspc.190089
作者姓名:张晓英  张艺  王琨  张蜡宝  陈伟  王晓兰
作者单位:兰州理工大学 电气工程与信息工程学院,甘肃 兰州 730050;国网甘肃省电力公司电力科学研究院, 甘肃兰州 730050;南京大学 电子科学与工程学院,江苏 南京 210093
基金项目:国家自然科学基金项目资助(51867015,51767017);甘肃省基础研究创新群体项目资助(18JR3RA133);甘肃省高校协同创新团队项目资助(2018C-09)
摘    要:针对含分布式电源(DG)的配电网无功优化的问题,为更准确地描述DG出力的不确定性,基于加权高斯混合分布(WGMD)和Beta分布分别构建风电DG和光伏DG的出力模型。采用结合切片采样算法的马尔科夫链蒙特卡洛模拟法进行潮流计算。建立以系统有功网损最小、节点电压总偏差最小为目标函数的多目标无功优化模型,并采用改进的非支配排序遗传算法(NSGA-Ⅱ)对该优化模型进行求解。通过改进的IEEE 33节点系统的仿真验证了所提方法的可行性和有效性。

关 键 词:分布式电源  配电网无功优化  加权高斯混合分布  切片采样算法  改进的NSGA-Ⅱ算法
收稿时间:2019-01-20
修稿时间:2019-05-29

Reactive power optimization of distribution network with distributed generations based on improved NSGA-II algorithm
ZHANG Xiaoying,ZHANG Yi,WANG Kun,ZHANG Labao,CHEN Wei and WANG Xiaolan. Reactive power optimization of distribution network with distributed generations based on improved NSGA-II algorithm[J]. Power System Protection and Control, 2020, 48(1): 55-64. DOI: 10.19783/j.cnki.pspc.190089
Authors:ZHANG Xiaoying  ZHANG Yi  WANG Kun  ZHANG Labao  CHEN Wei  WANG Xiaolan
Affiliation:College of Electrical and Information Engineering, Lanzhou University of Technology, Lanzhou 730050, China,College of Electrical and Information Engineering, Lanzhou University of Technology, Lanzhou 730050, China,State Grid Gansu Electric Power Company Electric Power Research Institute, Lanzhou 730050, China,School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China,College of Electrical and Information Engineering, Lanzhou University of Technology, Lanzhou 730050, China and College of Electrical and Information Engineering, Lanzhou University of Technology, Lanzhou 730050, China
Abstract:To more accurately describe the uncertainty of the DG power, this paper respectively establishes the output models of wind power DG and photovoltaic DG based on the Weighted Gauss Mixed Distribution (WGMD) and Beta distribution to solve the problem of reactive power optimization in the distribution network with Distributed Generations (DG). In the meantime, the Markov Chain Monte Carlo method combined with slice sampling algorithm is used for power flow calculation. The multi-objective reactive power optimization model which takes the minimum loss of the active power and minimum total voltage deviation of bus as objective function is established. And the improved Non- Dominated Sorting Genetic Algorithm (NSGA-II) is used to solve the optimization model. The feasibility and effectiveness of the proposed method is verified by the simulation of an improved IEEE33 node system. This work is supported by National Natural Science Foundation of China (No. 51867015 and No. 51767017).
Keywords:distributed generation   reactive power optimization of distribution network   weighted Gauss mixture distribution   slice sampling algorithm   improved NSGA-II algorithm
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《电力系统保护与控制》浏览原始摘要信息
点击此处可从《电力系统保护与控制》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号