首页 | 本学科首页   官方微博 | 高级检索  
     


Influence of micro-cracking and contact on the effective properties of composite materials
Authors:Domenico Bruno  Fabrizio Greco  Paolo Lonetti  Paolo Nevone Blasi
Affiliation:aUniversity of Calabria, Department of Structural Engineering, 87036 Arcavacata di Rende (CS), Italy
Abstract:In the present work a novel micro-mechanical approach to analyze the influence of micro-crack evolution and contact on the effective properties of elastic composite materials is proposed, based on homogenization techniques, interface models and fracture mechanics concepts. By means of the finite element method, enhanced non-linear macroscopic constitutive laws are developed by taking into account changes in micro-structural configuration associated with the growth of micro-cracks and with contact between crack faces. Numerical simulations are carried out for the cases of a porous composite with edge cracks and of a debonded fibre reinforced composite, loaded along extension/compression uniaxial macro-strain paths. Micro-crack propagation is modelled by using an original methodology based on the J-integral technique in conjunction with an interface model taking into account the unilateral contact of crack faces. In the context of a micro-to-macro transition obtained by controlling the macro-deformation of the micro-structure, the effects of adopting three types of boundary conditions on the macroscopic constitutive law, namely linear deformation, uniform tractions and periodic deformations and anti-periodic tractions, are studied. As a consequence, the proposed method can be applied to a large class of problems including periodic, locally periodic and irregular composite materials. Micro-crack and contact evolution result in a progressive loss of stiffness and can lead to failure for homogeneous macro-deformations associated with unstable crack propagation.
Keywords:Micro-cracking  Interfacial debonding  Composite material macroscopic properties  Contact  Finite elements
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号