首页 | 本学科首页   官方微博 | 高级检索  
     

基于动态学习和个体淘汰的鲸鱼算法求解订单接受与调度问题
引用本文:任丹萍,郑子威,陈湘国. 基于动态学习和个体淘汰的鲸鱼算法求解订单接受与调度问题[J]. 河北工程大学学报(自然科学版), 2022, 39(1): 99-105. DOI: 10.3969/j.issn.1673-9469.2022.01.015
作者姓名:任丹萍  郑子威  陈湘国
作者单位:河北工程大学 信息与电气工程学院,河北 邯郸056038,河北工程大学 河北省安防信息感知与处理重点实验室,河北 邯郸056038
基金项目:国家重点研发计划项目(2018YFF0301004)
摘    要:结合订单型企业生产线的实际情况,在传统的订单接受与调度模型的基础上加入因客户优先级而带来的订单拒绝成本这一重要因素,并使用新型的鲸鱼优化算法(WOA)进行求解.WOA被提出是用于求解实数域的问题而且存在容易陷入局部最优的缺陷,针对这一问题提出一种改进的鲸鱼优化算法(IWOA).使用基于排序和偏离度的编码方式用于求解订单...

关 键 词:订单接受与调度  拒绝成本  改进鲸鱼优化算法  动态学习
收稿时间:2021-08-01

Whale Optimization Algorithm Based on Dynamic Learning and Individual Elimination Strategy to Solve Order Acceptance and Scheduling Problems
REN Danping,ZHENG Ziwei and CHEN Xiangguo. Whale Optimization Algorithm Based on Dynamic Learning and Individual Elimination Strategy to Solve Order Acceptance and Scheduling Problems[J]. Journal of Hebei University of Engineering(Natural Science Edition), 2022, 39(1): 99-105. DOI: 10.3969/j.issn.1673-9469.2022.01.015
Authors:REN Danping  ZHENG Ziwei  CHEN Xiangguo
Affiliation:School of Information and Electrical Engineering, Hebei University of Engineering, Handan, Hebei 056038, China,Hebei Key Laboratory of Security & Protection Information Sensing and Processing, Hebei University of Engineering, Handan, Hebei 056038, China and School of Information and Electrical Engineering, Hebei University of Engineering, Handan, Hebei 056038, China
Abstract:Combined with the actual situation of the production line of order-oriented enterprises, the important factor of order rejection cost due to customer priority was added to the traditional order acceptance model, and the new whale optimization algorithm (WOA) was used to solve the problem. WOA was proposed to solve real number domain problems and had the defect of easily falling into local optimum. To solve this problem, an improved whale optimization algorithm (IWOA) was proposed. The coding method based on ranking and deviation degree was used to solve the integer domain problem of the order acceptance model. Adding a dynamic learning strategy from historical individuals could avoid premature algorithms to a certain extent. In order to prevent whale individuals from deviating from the optimal direction in the process of random search and thus affecting the convergence speed, the cross-selection strategy of genetic algorithm was used to eliminate inferior individuals. The experiment compares IWOA with WOA and the improved gray wolf algorithm (HGWO), which proves the advantages of IWOA in solving the order acceptance model, the stability of result, the convergence speed of the algorithm itself and the quality of initial solution, etc.
Keywords:order acceptance and scheduling  rejection cost  improved whale optimization algorithm  dynamic learning
本文献已被 万方数据 等数据库收录!
点击此处可从《河北工程大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《河北工程大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号