首页 | 本学科首页   官方微博 | 高级检索  
     


Rhizosphere acidification of faba bean, soybean and maize
Authors:LL Zhou  J Cao  L Li
Affiliation:a College of Resources and Environmental Sciences, China Agricultural University, Key Laboratory of Plant and Soil Interactions, Ministry of Education, Beijing, 100094, PR China
b School of Life Science, Key Laboratory of Arid and Grassland Ecology, Lanzhou University, Lanzhou 730000, PR China
c Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100094, PR China
Abstract:Interspecific facilitation on phosphorus uptake was observed in faba bean/maize intercropping systems in previous studies. The mechanism behind this, however, remained unknown. Under nitrate supply, the difference in rhizosphere acidification potential was studied by directly measuring pH of the solution and by visualizing and quantifying proton efflux of roots between faba bean (Vicia faba L. cv. Lincan No.5), soybean (Glycine max L. cv. Zhonghuang No. 17) and maize (Zea mays L. cv. Zhongdan No.2) in monoculture and intercrop, supplied without or with 0.2 mmol L− 1 P as KH2PO4. The pH of the nutrient solution grown faba bean was lower than initial pH of 6.0 from day 1 to day 22 under P deficiency, whereas the pH of the solution with maize was declined from day 13 after treatment. Growing soybean increased solution pH irrespective of P supply. Under P deficiency, the proton efflux of faba bean both total (315.25 nmol h− 1 plant− 1) and specific proton efflux (0.47 nmol h− 1 cm− 1) was greater than that those of soybean (21.80 nmol h− 1 plant− 1 and 0.05 nmol h− 1 cm− 1, respectively). Faba bean had much more ability of rhizosphere acidification than soybean and maize. The result can explain partly why faba bean utilizes sparingly soluble P more effectively than soybean and maize do, and has an important implication in understanding the mechanism behind interspecific facilitation on P uptake by intercropped species.
Keywords:Intercropping  Zea mays L    Proton efflux  Phosphorus  Rhizosphere acidification  Glycine max L  Vicia faba L
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号