首页 | 本学科首页   官方微博 | 高级检索  
     


Genomic organization of a voltage-gated Na+ channel in a hydrozoan jellyfish: insights into the evolution of voltage-gated Na+ channel genes
Authors:Spafford J D  Spencer A N  Gallin W J
Affiliation:Department of Biological Sciences, University of Alberta, Edmonton, Canada.
Abstract:Voltage-gated Na+ channels are responsible for fast propagating action potentials. The structurally simplest animals known to contain rapid, transient, voltage-gated currents carried exclusively by Na+ ions are the Cnidaria. The Cnidaria are thought to be close to the origin of the metazoan radiation and thus are pivotal organisms for studying the evolution of the Na+ channel gene. Here we describe the genomic organization of the Na+ channel alpha subunit, PpSCN1, from the hydrozoan jellyfish, Polyorchis penicillatus. We show that most of the 20 intron sites in this diploblast are conserved in mammalian Na+ channel genes, with some even shared by Ca2+ channels. One of these conserved introns is spliced by a rare U 12-type spliceosome. Such conservation places the origin of the primary exon arrangement of Na+ channels and different intron splicing mechanisms to at least the common ancestors of diploblasts and triploblasts, approximately 600 million-1 billion years ago.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号