首页 | 本学科首页   官方微博 | 高级检索  
     


Development of a simulation model to predict LiDAR interception in forested environments
Authors:NR Goodwin  NC Coops
Affiliation:a Ensis, The Joint Venture of CSIRO and SCION, Private Bag 10, Clayton South 3169, Vic., Australia
b School of Biological, Earth, and Environmental Sciences, University of New South Wales, 2052, NSW, Australia
c Department of Forest Resource Management, 2424 Main Mall, University of British Columbia, Vancouver, Canada V6T 1Z4
Abstract:Airborne scanning LiDAR systems are used to predict a range of forest attributes. However, the accuracy with which this can be achieved is highly dependent on the sensor configuration and the structural characteristics of the forest examined. As a result, there is a need to understand laser light interactions with forest canopies so that LiDAR sensor configurations can be optimised to assess particular forest types. Such optimisation will not only ensure the targeted forest attributes can be accurately and consistently quantified, but may also minimise the cost of data acquisition and indicate when a survey configuration will not deliver information needs.In this paper, we detail the development and application of a model to simulate laser interactions within forested environments. The developed model, known as the LiDAR Interception and Tree Environment (LITE) model, utilises a range of structural configurations to simulate trees with variable heights, crown dimensions and foliage clumping. We developed and validated the LITE model using field data obtained from three forested sites covering a range of structural classes. Model simulations were then compared to coincident airborne LiDAR data collected over the same sites. Results indicate that the LITE model can be used to produce comparable estimates of maximum height of trees within plots (differences < 2.42 m), mean heights of first return data (differences < 2.27 m), and canopy height percentiles (r2 = 0.94, p < 0.001) when compared to airborne LiDAR data. In addition, the distribution of airborne LiDAR hits through the canopy profile was closely matched by model predictions across the range of sites. Importantly, this demonstrates that the structural differences between forest stands can be characterised by LITE. Models that are capable of interpreting the response of small-footprint LiDAR waveforms can facilitate algorithm development, the generation of corrections for actual LiDAR data, and the optimisation of sensor configurations for differing forest types, benefiting a range of experimental and commercial LiDAR applications. As a result, we also performed a scenario analysis to demonstrate how differences in forest structure, terrain, and sensor configuration can influence the interception of LiDAR beams.
Keywords:LiDAR  Simulation modelling  Forest structure
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号