首页 | 本学科首页   官方微博 | 高级检索  
     


Regionally adaptable dNBR-based algorithm for burned area mapping from MODIS data
Authors:T Loboda  KJ O'Neal  I Csiszar
Affiliation:University of Maryland, Geography Department, United States
Abstract:Recent advances in instrument design have led to considerable improvements in wildfire mapping at regional and global scales. Global and regional active fire and burned area products are currently available from various satellite sensors. While only global products can provide consistent assessments of fire activity at the global, hemispherical or continental scales, the efficiency of their performance differs in various ecosystems. The available regional products are hard-coded to the specifics of a given ecosystem (e.g. boreal forest) and their mapping accuracy drops dramatically outside the intended area. We present a regionally adaptable semi-automated approach to mapping burned area using Moderate Resolution Imaging Spectroradiometer (MODIS) data. This is a flexible remote sensing/GIS-based algorithm which allows for easy modification of algorithm parameterization to adapt it to the regional specifics of fire occurrence in the biome or region of interest. The algorithm is based on Normalized Burned Ratio differencing (dNBR) and therefore retains the variability of spectral response of the area affected by fire and has the potential to be used beyond binary burned/unburned mapping for the first-order characterization of fire impacts from remotely sensed data. The algorithm inputs the MODIS Surface Reflectance 8-Day Composite product (MOD09A1) and the MODIS Active Fire product (MOD14) and outputs yearly maps of burned area with dNBR values and beginning and ending dates of mapping as the attributive information. Comparison of this product with high resolution burn scar information from Landsat ETM+ imagery and fire perimeter data shows high levels of accuracy in reporting burned area across different ecosystems. We evaluated algorithm performance in boreal forests of Central Siberia, Mediterranean-type ecosystems of California, and sagebrush steppe of the Great Basin region of the US. In each ecosystem the MODIS burned area estimates were within 15% of the estimates produced by the high resolution base with the R2 between 0.87 and 0.99. In addition, the spatial accuracy of large burn scars in the boreal forests of Central Siberia was also high with Kappa values ranging between 0.76 and 0.79.
Keywords:Fire  Burned area  MODIS  Normalized burn ratio
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号