首页 | 本学科首页   官方微博 | 高级检索  
     


Burn severity estimation from remotely sensed data: Performance of simulation versus empirical models
Authors:Angela De Santis  Emilio Chuvieco
Affiliation:Department of Geography, University of Alcalá, Alcalá de Henares, Spain
Abstract:Burn severity is a key factor in post-fire assessment and its estimation is traditionally restricted to field work and empirical fitting from remotely sensed data. However, the first method is limited in terms of spatial coverage and cost effectiveness and the second is site- and data-specific. Since alternative approaches based on radiative transfer models (RTM) have been usefully applied in retrieving several biophysical plant parameters (leaf area index, water and dry matter content, chlorophyll), this paper has applied the inversion of a simulation model to estimate burn severity in terms of the Composite Burn Index (CBI). The performance of the model inversion method was compared to standard empirical techniques. The study area chosen was a large forest fire in central Spain which occurred in July 2005. The model inversion showed the most accurate estimation for high severity levels (for CBI > 2.7, RMSE = 0.30) and for unburned areas (CBI < 0.5, RMSE = 0). In both methodologies, the error associated to CBI from 0.5 to 2.7 was not acceptable (RMSE > 0.7), because it is higher than 25% of the total range of the index. Finally, burn severity maps from both methods were compared.
Keywords:Forest Fires   Burn Severity   Kuusk Model   RTM Inversion   Landsat TM   Spectral Indices   NBR   CBI
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号