首页 | 本学科首页   官方微博 | 高级检索  
     


Enhancement of the Seebeck coefficient in touching M/Bi–Te/M (M = Cu and Ni) composites
Authors:Osamu Yamashita  Hirotaka Odahara
Affiliation:(1) Faculty of Engineering, Ehime University, Bunkyocho, Matsuyama 790-8577, Japan;(2) Present address: 5-5-44, Minamikasugaoka, Ibaraki, Osaka 567-0046, Japan
Abstract:The resultant Seebeck coefficient α of the touching p- and n-type M/Bi–Te/M (M = Cu and Ni) composites was measured as a function of z at a scan step of 0.5 mm using thermocouples set at three different intervals of s = 4, 6.5 and 8 mm, where s is the interval between two probes and z is the distance from the center of Bi–Te compound to the middle of two thermocouples. Bi–Te compounds have a thickness of t Bi–Te = 6 mm but the thickness t M of both end metals sandwiching their compounds was varied from 0.5 mm to 6 mm. The composites were compacted tightly at a force of about 10 N by a ratchet. When two probes are placed on both end metals, the resultant α was significantly enhanced and exhibited a tendency to increase as s approaches t Bi–Te, like the welded composites. The enhancement in α is attributed to the contribution from the barrier thermo-emf generated near the interface. When the thickness t 0 of metal outside two probes set at s = 6.5 mm was increased from 0.25 mm to 5.75 mm, the averaged α for M = Cu and Ni was increased by 3.8% in the p-type composite, while reversely it was decreased by 4.8% in the n-type one. It was first observed that t 0 also has a significant influence on the resultant α. The maximum α of the p- and n-type Ni/Bi–Te/Ni composites then reached great values of 264 μV/K at t M = 6 mm (corresponding to t 0 = 5.75 mm) and −280 μV/K at t M = 1.2 mm (corresponding to t 0 = 0.95 mm), respectively, which are 29% and 23% larger in absolute value than their intrinsic α values. These maximum α were barely changed with time. It was thus found that the barrier thermo-emf is generated steadily even in touching composites and the resultant α is highly sensitive to the position of leads connected to the metal electrode of a thermoelement.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号