首页 | 本学科首页   官方微博 | 高级检索  
     

基于神经网络的热轧卷取温度模型辨识
引用本文:王益群,王海芳,孙旭光,张伟. 基于神经网络的热轧卷取温度模型辨识[J]. 中国机械工程, 2006, 17(1): 71-74
作者姓名:王益群  王海芳  孙旭光  张伟
作者单位:燕山大学,秦皇岛,066004
基金项目:中国科学院资助项目;河北省自然科学基金
摘    要:针对热轧带钢卷取温度模型具有高度非线性的特点,利用神经网络具有逼近任何非线性函数及预报的性质,采用附加动量BP算法,准确预报卷取温度,进而应用最小二乘辨识方法对卷取温度统计模型进行参数辨识,辨识结果与设定结果的比较表明此方法行之有效。这种神经网络预报与最小二乘线性辨识相结合的方法为热轧带钢卷取温度模型的辨识优化提供了新的途径。

关 键 词:热轧带钢  卷取温度  神经网络  BP算法  最小二乘法
文章编号:1004-132X(2006)01-0071-04
收稿时间:2004-11-26
修稿时间:2004-11-262005-07-02

Identification of Coiling Temperature Model of Hot Roll Based on Neural Network
Wang Yiqun,Wang Haifang,Sun Xuguang,Zhang Wei. Identification of Coiling Temperature Model of Hot Roll Based on Neural Network[J]. China Mechanical Engineering, 2006, 17(1): 71-74
Authors:Wang Yiqun  Wang Haifang  Sun Xuguang  Zhang Wei
Affiliation:Yanshan University, Qinhuangdao, Hebei, 066004
Abstract:The model of conventional coiling temperature is highly nonlinear. The coiling temperature of hot rolled strip was exactly predicted based on neural network(NN) by means of its approximation to any non-linear system and its ability of prediction. Additional momentum method, which is an improved BP algorithm, was used in the NN. And the predicted coiling temperature was applied to identify characteristic parameters of the static model of coiling temperature with aid of traditional least square method. Finally, identification results are illustrated and verified by referenced values.
Keywords:hot rolled strip   coiling temperature   neural network   BP algorithm   least square method
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号