首页 | 本学科首页   官方微博 | 高级检索  
     

基于RSSI 和分步粒子群算法的无线传感器网络定位算法
引用本文:冯秀芳 吕淑芳. 基于RSSI 和分步粒子群算法的无线传感器网络定位算法[J]. 控制与决策, 2014, 29(11): 1966-1972
作者姓名:冯秀芳 吕淑芳
作者单位:太原理工大学计算机科学与技术学院,太原,030024
基金项目:山西省科技基础条件平台建设项目
摘    要:为了更加合理地分配网络资源、采集性能优良的信息来更好地完成任务,提高事件的定位精确度,提出一种基于接收信号强度指示(RSSI)和分步粒子群算法的无线传感器网络定位算法(IPSO-IRSSI).该算法在分析RSSI无线传播损耗模型的基础上,结合优胜劣汰的选择思想以及目标函数最优的权重自适应方法,提出过滤锚节点机制和粒子群分步算法.仿真实验结果表明,该算法具有较高的定位精度,优于距离相关的传统定位算法.

关 键 词:无线传感器网络  定位优化  粒子群算法  接收信号强度指示
收稿时间:2013-07-10
修稿时间:2014-01-09

Wireless sensor networks locating algorithm based on RSSI and split-step particle swarm optimization algorithm
FENG Xiu-fang LV Shu-fang. Wireless sensor networks locating algorithm based on RSSI and split-step particle swarm optimization algorithm[J]. Control and Decision, 2014, 29(11): 1966-1972
Authors:FENG Xiu-fang LV Shu-fang
Abstract:

In order to distribute net resource reasonably and gather better performed information to fulfill tasks and improve the locating accuracy of events, a wireless sensor network locating algorithm, called improved particle swarm optimizationimproved received signal strength indicator(IPSO-IRSSI), based on relative received signal strength(RSSI) and the split-step particle swarm optimization algorithm is proposed. Based on the analysis of RSSI radio propagation loss model, combined with the idea of survival of the fittest selection and adaptive weight approach of the optimal objective function the proposed algorithm, promotes a mechanism of filtration of anchor nodes and a particle swarm optimization step algorithm. Simulation experiments dates show that the algorithm obtains a better locating accuracy and is superior to the distance related traditional locating algorithm.

Keywords:wireless sensor networks  localization optimization  particle swarm optimization  relative received signal strength
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《控制与决策》浏览原始摘要信息
点击此处可从《控制与决策》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号