首页 | 本学科首页   官方微博 | 高级检索  
     


Electrical and structural properties of double metal structure Ni/V Schottky contacts on n-InP after rapid thermal process
Authors:S Sankar Naik  V Rajagopal Reddy  Chel-Jong Choi and Jong-Seong Bae
Affiliation:(1) Department of Physics, Sri Venkateswara University, Tirupati, 517502, India;(2) School of Semiconductor and Chemical Engineering, Semiconductor Physics Research Center (SPRC), Chonbuk National University, Jeonju, 561-756, Korea;(3) Busan Center, Korea Basic Science Institute (KBSI), Busan, 609-735, Korea;
Abstract:The electrical, structural, and surface morphological properties of Ni/V Schottky contacts have been investigated as a function of annealing. The Schottky barrier height value from IV and CV measurements for as-deposited Ni/V/n-InP diode is 0.61 eV (IV) and 0.91 eV (CV), respectively. It has been observed that the Schottky barrier height decreases with increasing annealing temperature as compared to the as-deposited contact. For the contact annealed at 200 °C, the obtained barrier height decreased to 0.52 eV (IV) and 0.78 eV (CV). Further, the annealing temperature increased to 300 and 400 °C, the barrier height slightly increased to 0.58 eV (IV), 0.82 eV (CV) and 0.59 eV (IV), 0.88 eV (CV). However, after annealing at 500 °C, results then decrease in barrier height to 0.51 eV (IV) and 0.76 eV (CV), which is lower than the value obtained for the sample annealed at 200 °C. The Norde method is also employed to extract the barrier height of Ni/V/InP Schottky diode, and the values are 0.68 eV for the as-deposited and 0.56 eV for the contact annealed at 500 °C, which are in good agreement with those obtained by IV technique. Based on the results of AES and XRD studies, it is concluded that the formation of indium phases at the Ni/V/n-InP interface may be the reason for the increase in the barrier height for the as-deposited contact. The decrease in the barrier height upon annealing at 500 °C may be due to the formation of phosphide phases at the interface. The AFM results showed that there is no significant degradation in the surface morphology (RMS roughness of 0.61 nm) of the contact even after annealing at 500 °C.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号