首页 | 本学科首页   官方微博 | 高级检索  
     

露天煤矿卡车路段行程时间的实时动态预测新方法
引用本文:薛雪,孙伟,梁睿. 露天煤矿卡车路段行程时间的实时动态预测新方法[J]. 煤炭学报, 2012, 37(8): 1418-1422
作者姓名:薛雪  孙伟  梁睿
作者单位:中国矿业大学 信息与电气工程学院,江苏 徐州 221116
基金项目:中央高校基本科研业务费专项资金资助项目
摘    要:针对露天煤矿卡车优化调度中重要的行程时间预测问题,考虑影响卡车行程时间的各种因素,建立卡车行程时间预测模型,利用最小二乘支持向量回归算法(LS-SVR)和选择性集成学习思想,提出一种基于最小二乘支持向量回归的选择性集成学习算法实现卡车行程时间的动态预测。并在实际采集的露天煤矿数据上进行实验,得到较高的预测精度,说明了算法的有效性。

关 键 词:露天煤矿;卡车;行程时间;动态预测;最小二乘支持向量回归;选择性集成学习  
收稿时间:2011-08-18

A new method of real-time dynamic forecast of truck link travel time in open mines
XUE Xue,SUN Wei,LIANG Rui. A new method of real-time dynamic forecast of truck link travel time in open mines[J]. Journal of China Coal Society, 2012, 37(8): 1418-1422
Authors:XUE Xue  SUN Wei  LIANG Rui
Affiliation:(School of Information and Electrical Engineering,China University of Mining and Technology,Xuzhou 221116,China)
Abstract:Aiming at travel time prediction problem in optimal dispatching of truck in open coal mines,a truck travel time prediction model which considered various truck travel time influencing factors was built.Using least squares support vector regression(LS-SVR) algorithm and selectivity ensemble learning concept,this paper proposed a truck travel time dynamic prediction method realized by selectivity ensemble learning algorithm based on least squares support vector regression.Experiments were done using the practical data acquired from open coal mines.Higher prediction accuracy was obtained,and the effectiveness of the proposed algorithm was proved.
Keywords:open mine  truck  travel time  real-time dynamic forecast  least squares support vector regression  ensemble selection learning
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《煤炭学报》浏览原始摘要信息
点击此处可从《煤炭学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号