首页 | 本学科首页   官方微博 | 高级检索  
     

基于空间分割前向竞争网络的信号识别
引用本文:袁继敏,古天祥,徐晨曦. 基于空间分割前向竞争网络的信号识别[J]. 电子测量与仪器学报, 2007, 21(3): 15-19
作者姓名:袁继敏  古天祥  徐晨曦
作者单位:电子科技大学自动化工程学院,成都,610054;攀枝花学院计算机学院,攀枝花,617000;电子科技大学自动化工程学院,成都,610054
摘    要:本文提出运用空间分割竞争网络结合Kohonen学习规则实现有规则模拟信号分类识别方法.以信号谐波、信号面积和信号正负面积之比等参数为识别特征,利用软边界处理的Kohonen训练规则,将识别特征值分布特性通过软边界技术快捷地训练到寻址层隶属度矩阵中.该方法减少了训练样本、提高学习速度,克服了由于大样本训练导致空间块隶属度统计不足的缺点.实验证明该方法识别常见信号特征有效性高.

关 键 词:空间分割  竞争网络  波形识别  软边界处理
修稿时间:2007-01-01

Signal Identification Based on Area Division Forward Competitive Neural Network
Yuan Jimin,Gu Tiangxiang,Xu Chenxi. Signal Identification Based on Area Division Forward Competitive Neural Network[J]. Journal of Electronic Measurement and Instrument, 2007, 21(3): 15-19
Authors:Yuan Jimin  Gu Tiangxiang  Xu Chenxi
Affiliation:1. Automatic College of UESTC, SiChuan Chengdu. 610054, China; 2. Computer College of PanZhiHua University, SiChuan PanZhiHua. 617000, China
Abstract:This paper proposes a new signal identification approach, which combines Area Division Competitive Neural Network (ADCNN) with Kohonen learning rule. The sum of ten harmonics, the waveform area of one period and the ratio of the positive area to negative area in one cycle are selected as identification characteristic parameters. The ADCNN is trained with Kohonen rule, and the distribution characteristic of signal identification feature is trained into the membership matrix of the network addressing layer using soft-boundary processing technology. This method reduces the training sample, increases the learning speed and solves the problem of insufficient membership of space-area block when the sample is too large. Experiment proves that the method can identify common analog signal features effectively.
Keywords:area division   competitive neural network   soft-boundary processing   signal identification.
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号