首页 | 本学科首页   官方微博 | 高级检索  
     


Evaporated nanostructured Y2O3:Eu thin films
Authors:Hrudey P C P  Taschuk M  Tsui Y Y  Fedosejevs R  Sit J C  Brett M J
Affiliation:Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Canada T6G 2V4.
Abstract:Europium-doped yttrium oxide (Y2O3:Eu) is a well-known luminescent material that in recent years has been studied in thin-film form. However, to date there has not been a great effort put into altering the nanostructure of these films. A thin-film deposition technique called glancing angle deposition allows for a high degree of control over the nanostructure of the thin film, resulting in thin films with nanostructure geometries ranging from chevron and post to helix. Glancing-angle deposition was used to make europium-doped yttrium oxide thin films with slanted-post nanostructures. Portions of the films were annealed in air at 850 degrees C for 10 hours following deposition. Scanning electron microscopy was used to characterize the nanostructures of the films, while UV laser excitation was used to characterize the photoluminescence properties of the films. The annealed samples exhibited increased photoluminescent responses compared to unannealed samples; however, the porous nanoscale geometry of the films was unaffected. In order to optimize the photoluminescence properties of the films, both the partial pressure of oxygen during film deposition and the level of europium doping in the source material used were varied. Films fabricated from the source material with a greater amount of europium doping had larger photoluminescent responses, while the optimal partial pressure of oxygen during electron-beam evaporation was found to be less than 1.0 x 10(-4) torr.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号