首页 | 本学科首页   官方微博 | 高级检索  
     

非谐激励与周期弯晶中粒子运动的混沌行为
引用本文:王娜,罗诗裕. 非谐激励与周期弯晶中粒子运动的混沌行为[J]. 半导体光电, 2017, 38(5): 705-708,713. DOI: 10.16818/j.issn1001-5868.2017.05.018
作者姓名:王娜  罗诗裕
作者单位:广东技术师范学院自动化学院,广州,510000;重庆交通大学理学院,重庆,400074
摘    要:利用Melnikov方法讨论了非谐激励系统的混沌行为,并在极限情况κ→0下,把非谐激励转化为谐波激励,而运动方程化为倒置摆方程.倒置摆方程描写了带电粒子在周期弯晶中翻越势垒的横向运动行为.结果表明:系统的稳定性与参数有关,适当调整参数就能保证系统是稳定的;即使保持参数不变,调整系统初始状态也可以使系统完成从无序向有序,或者从有序向无序转换.

关 键 词:晶体摆动场辐射  非谐激励  Melnikov方法  混沌
收稿时间:2017-03-30

Anharmonic Excitation and Chaotic Behaviours for Particle Motion in Periodic Bending Crystals
WANG Na,LUO Shiyu. Anharmonic Excitation and Chaotic Behaviours for Particle Motion in Periodic Bending Crystals[J]. Semiconductor Optoelectronics, 2017, 38(5): 705-708,713. DOI: 10.16818/j.issn1001-5868.2017.05.018
Authors:WANG Na  LUO Shiyu
Abstract:The chaotic behavior of the system with anharmonic excitation is discussed by using the Melnikov method. In the limit case, the anharmonic excitation is transformed into the harmonic excitation, and the equation of motion is induced into the inverted pendulum equation. The inverted pendulum equation describes the transverse motion of a charged particle in a periodic bending crystal. The results show that the stability of the system is related to the parameters, and the system can be stabilized by adjusting the parameters properly. Even if the system parameters remain unchanged, adjusting the initial state of the system also allows the system to transit from unordered to ordered, or vice versa.
Keywords:crystalline undulator radiation  anharmonic excitation  Melnikov method  chaos
本文献已被 万方数据 等数据库收录!
点击此处可从《半导体光电》浏览原始摘要信息
点击此处可从《半导体光电》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号