首页 | 本学科首页   官方微博 | 高级检索  
     


Distribution of large biomass particles in a sand‐biomass fluidized bed: Experiments and modeling
Authors:Farzam Fotovat  Jamal Chaouki  Jeffrey Bergthorson
Affiliation:1. Dept. of Chemical Engineering, école Polytechnique de Montréal, Centre Ville, Montreal, QC, Canada;2. Dept. of Mechanical Engineering, McGill University, Montreal, QC, Canada
Abstract:The axial distribution of large biomass particles in bubbling fluidized beds comprised of sand and biomass is investigated in this study. The global and local pressure drop profiles are analyzed in mixtures fluidized at superficial gas velocities ranging from 0.2 to 1 m/s. In addition, the radioactive particle tracking technique is used to track the trajectory of a tracer mimicking the behavior of biomass particles in systems consisting of 2, 8, and 16% of biomass mass ratio. The effects of superficial gas velocity and the mixture composition on the mixing/segregation of the bed components are explored by analyzing the circulatory motion of the active tracer. Contrary to low fluidization velocity (U = 0.36 m/s), biomass circulation and distribution are enhanced at U = 0.64 m/s with increasing the load of biomass particles. The axial profile of volume fraction of biomass along the bed is modeled on the basis of the experimental findings. © 2014 American Institute of Chemical Engineers AIChE J, 60: 869–880, 2014
Keywords:fluidization  mixing  biomass  particle tracking  pressure analysis
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号