首页 | 本学科首页   官方微博 | 高级检索  
     


Bubble point pressures of binary methanol/water mixtures in fine‐mesh screens
Authors:Jason Hartwig  J Adin Mann
Affiliation:1. Propellants and Propulsion Branch, NASA Glenn Research Center, Cleveland, OH;2. Emeritus Professor of Chemical Engineering, Case Western Reserve University, Cleveland, OH
Abstract:Binary methanol/water mixture bubble point tests involving three samples of fine‐mesh, stainless steel screens as porous liquid acquisition devices are presented in this article. Contact angles are measured as a function of methanol mass fraction using the Sessile Drop technique. Pretest predictions are based on a Langmuir isotherm fit. Predictions and data match for methanol mole fractions greater than 50% when pore diameters are based on pure liquid tests. For all three screens, bubble point is shown to be a maximum at a methanol mole fraction of 50%. Model and data are in disagreement for mole fractions less than 50%, which is attributed to variations between surface and bulk fluid properties. A critical Zisman surface tension value of 23.2 mN/m is estimated, below which contact angles can be assumed to be zero. Solid/vapor and solid/liquid interfacial tensions are also estimated using the equation of state analysis from Neumann and Good. Published 2013 American Institute of Chemical Engineers AIChE J 60: 730–739, 2014
Keywords:aqueous solutions  porous media  thermodynamics/classical  interfacial processes  multiphase flow
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号