首页 | 本学科首页   官方微博 | 高级检索  
     

蚁群优化算法在求解随机组合优化问题中的应用综述*
引用本文:李凯齐,刁兴春,曹建军. 蚁群优化算法在求解随机组合优化问题中的应用综述*[J]. 计算机应用研究, 2010, 27(12): 4406-4409. DOI: 10.3969/j.issn.1001-3695.2010.12.002
作者姓名:李凯齐  刁兴春  曹建军
作者单位:1. 解放军理工大学,指挥自动化学院,南京,210007;总参第六十三研究所,南京,210007
2. 总参第六十三研究所,南京,210007
基金项目:中国博士后科学基金资助项目(20090461425);江苏省博士后科研计划资助项目(0901014B)
摘    要:不确定条件下的优化问题更贴近真实世界环境,因而日益受到广泛关注。综述了蚁群优化在求解一组不确定条件下的组合优化问题,即随机组合优化问题方面的应用。首先介绍了不确定条件下组合优化问题的概念分类模型,给出了随机组合优化问题的一般定义;然后指出了其与求解传统确定性组合优化问题的不同之处,即目标函数的计算存在不确定性,并详细论述了目前解决方法的进展;最后分析了该领域值得重点关注的几个研究方向,并对其未来发展进行了展望。

关 键 词:蚁群优化   随机   不确定性   组合优化   特定近似   采样近似

Survey on ant colony optimization algorithms for stochastic combinatorial optimization
LI Kai-qi,DIAO Xing-chun,CAO Jian-jun. Survey on ant colony optimization algorithms for stochastic combinatorial optimization[J]. Application Research of Computers, 2010, 27(12): 4406-4409. DOI: 10.3969/j.issn.1001-3695.2010.12.002
Authors:LI Kai-qi  DIAO Xing-chun  CAO Jian-jun
Affiliation:(1.Institute of Command Automation, PLA University of Science & Technology, Nanjing 210007, China; 2.The 63rd Research Institute of PLA General Staff Headquarters, Nanjing 210007, China)
Abstract:The optimization problem under uncertainty because of its closer to the real world environment, thus have become a growing reasearch area recently. This paper thoroughly reviewed ant colony optimization algorithms, and their applications to the class of stochastic combinatorial optimization problems under uncertainty conditions. Firstly, introduced the conceptual classification model for combinatorial problems under uncertainty conditions and a general definition for the stochastic combinatorial optimization problem. Then, pointed out the main difference between stochastic combinatorial optimization problem and deterministic combinatorial optimization problem, that was the computation of the objective function under uncertainty, and then summarized the current solutions for solvins this problem. Finally, proposed several possible research directions and the expectations of the development in this area.
Keywords:ant colony optimization   stochastic   uncertainty   combinatorial optimization   Ad hoc approximation   sampling approximation
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《计算机应用研究》浏览原始摘要信息
点击此处可从《计算机应用研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号