首页 | 本学科首页   官方微博 | 高级检索  
     


Modeling and analysis of rotating plates by using self-sensing active constrained layer damping
Authors:Zhengchao Xie  Pak Kin Wong  Ian Ian Chong
Affiliation:1. Department of Electromechanical Engineering, University of Macau, Macau SAR, China
Abstract:This paper proposes a new finite element model for active constrained layer damped (CLD) rotating plate with self-sensing technique. Constrained layer damping can effectively reduce the vibration in rotating structures. Unfortunately, most existing research models the rotating structures as beams that are not the case many times. It is meaningful to model the rotating part as plates because of improvements on both the accuracy and the versatility. At the same time, existing research shows that the active constrained layer damping provides a more effective vibration control approach than the passive constrained layer damping. Thus, in this work, a single layer finite element is adopted to model a three-layer active constrained layer damped rotating plate. Unlike previous ones, this finite element model treats all three layers as having the both shear and extension strains, so all types of damping are taken into account. Also, the constraining layer is made of piezoelectric material to work as both the self-sensing sensor and actuator. Then, a proportional control strategy is implemented to effectively control the displacement of the tip end of the rotating plate. Additionally, a parametric study is conducted to explore the impact of some design parameters on structure??s modal characteristics.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号