首页 | 本学科首页   官方微博 | 高级检索  
     


The electrical and material characterization of hafnium oxynitride gate dielectrics with TaN-gate electrode
Authors:Chang Seok Kang Hag-Ju Cho Rino Choi Young-Hee Kim Chang Yong Kang Se Jong Rhee Changhwan Choi Akbar   M.S. Lee   J.C.
Affiliation:Dept. of Electr. & Comput. Eng., Univ. of Texas, Austin, TX, USA;
Abstract:Electrical and material characteristics of hafnium oxynitride (HfON) gate dielectrics have been studied in comparison with HfO/sub 2/. HfON was prepared by a deposition of HfN followed by post-deposition-anneal (PDA). By secondary ion mass spectroscopy (SIMS), incorporated nitrogen in the HfON was found to pile up at the dielectric/Si interface layer. Based on the SIMS profile, the interfacial layer (IL) composition of the HfON films appeared to be like hafnium-silicon-oxynitride (HfSiON) while the IL of the HfO/sub 2/ films seemed to be hafnium-silicate (HfSiO). HfON showed an increase of 300/spl deg/C in crystallization temperature compared to HfO/sub 2/. Dielectric constants of bulk and interface layer of HfON were 21 and 14, respectively. The dielectric constant of interfacial layer in HfON (/spl sim/14) is larger than that of HfO/sub 2/ (/spl sim/7.8). HfON dielectrics exhibit /spl sim/10/spl times/ lower leakage current (J) than HfO/sub 2/ for the same EOTs before post-metal anneal (PMA), while /spl sim/40/spl times/ lower J after PMA. The improved electrical properties of HfON over HfO/sub 2/ can be explained by the thicker physical thickness of HfON for the same equivalent oxide thickness (EOT) due to its higher dielectric constant as well as a more stable interface layer. Capacitance hysteresis (/spl Delta/V) of HfON capacitor was found to be slightly larger than that of HfO/sub 2/. Without high temperature forming gas anneal, nMOSFET with HfON gate dielectric showed a peak mobility of 71 cm/sup 2//Vsec. By high temperature forming gas anneal at 600/spl deg/C, mobility improved up to 256 cm/sup 2//Vsec.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号